Превращения головоломки адмирала Макарова (Д. Вакарелов, А. Калинин). Поделки из дерева Как собрать китайский кубик из 6 деталей

Самодельные деревянные головоломки, представленные на нашем сайте:

07.05.2013.

Узлы из шести брусков.

Думаю, не ошибусь, если скажу, что узел из шести брусков - самая известная деревянная головоломка.

Есть мнение (и я его полностью разделяю!), что родились деревянные узлы в Японии, в качестве импровизации на тему традиционных местных строительных конструкций. Наверное, именно поэтому современные жители Страны Восходящего Солнца - непревзойденные головоломщики. В лучшем смысле этого слова.

Лет... дцать назад, воружившись взятым напрокат уникальным и по сей день станком для детского творчества "Умелые руки", я изготовил из дуба и бука много вариантов шестибрусковых узлов...

Независимо от сложности исходных компонентов, во всех вариантах этой головоломки имеется один прямой, без вырезов брусок, который всегда вставляется в конструкцию последним и замыкает ее в неразделимое целое.

Нижеприведенные страницы из уже упоминавшейся книги А.С.Пугачева показывают разнообразие узлов из шести брусков и дают исчерпывающую информацию для их самостоятельного изготовления.

Среди представленных вариантов есть очень простые, а есть и не очень. Как-то так получилось, что один из них (в книге Пугачева он фигурирует под номером 6) получил собственное название - "Крест адмирала Макарова".

Узел из шести брусков - Головоломка "Крест адмирала Макарова".

Не стану вдаваться в детали, почему она так называется - то ли потому, что славный адмирал в затишьях между морскими баталиями любил мастерить ее в корабельной столярке, то ли еще почему... Скажу лишь одно - вариант этот действительно непростой, при том, что в деталях отсутствуют так нелюбимые мною "внутренние" выемки. Уж больно их неудобно выковыривать стамеской!

На нижеприведенных картинках, созданных с помощью программы трехмерного моделирования Autodesk 3D Max, показан внешний вид деталей и решение (очередность и ориентация в пространстве) головоломки "Крест адмирала Макарова"

На занятиях по компьютерной графике в Детской художественной школе №2, помимо прочего-разного, в качестве учебных пособий я также использую макеты головоломок, сделанные "на скорую руку" из пенопласта. Например, детали креста из шести брусков отлично подходят в качестве "натуры" для низколиполигонального моделирования.

А простейший узел из трех брусков пригодится для понимания основ ключевой анимации.

Помимо прочего, в той же книге А.С.Пугачева есть чертежи и других узлов, в том числе из двенадцати и даже из шестнадцати брусков!

Узел из шестнадцати брусков.

Несмотря на то, что деталей много, собрать эту головоломку довольно просто. Как и в случаях с шестибрусковыми узлами, последней вставляется прямая, без вырезов деталь.

DeAgostini Журнал "Занимательные головоломки" №№ 7, 10, 17

В номере № 7 журнала "Занимательные головоломки" издательства "DeAgostini" представлена довольно любопытная, на мой взгляд, головоломка "Косой узел".

В ее основе лежит очень простой узел из трех элементов, но за счет "скособочивания" новый вариант стал гораздо сложнее и интереснее. Во всяком случае, мои ученики в художественной школе порой крутят-вертят его, а собрать не могут...

Да и я сам, кстати, собравшись смоделировать его в программе 3D Max, помучился изрядно...

На нижеприведенном скриншоте из журнала показана последовательность сборки "Косого узла"

Очень похожа по своей внутренней сути на представленный на этой странице "Узел из шестнадцати брусков" головоломка "Бочка-пазл" из номера 17 журнала "Занимательные головоломки".

Да, пользуясь случаем, хочу отметить высокое качество изготовления практически всех приобретенных мною головоломок издательства "DeAgostini". В некоторых случаях пришлось, правда, взять в руки напильник и даже клей, но это уж так... издержки.

Ниже показан процесс сборки головоломки "Бочка-пазл".

Не могу не удержаться и не сказать несколько слов об очень оригинальной "Крестовой говоломке" из той же серии "Занимательные головоломки" № 10. С виду это вроде тоже крест (или узел), из двух брусков, но чтобы рассоединить их, нужна не умная голова, а сильные руки. В смысле - нужно быстро закрутить, как волчок, головоломку на ровной поверхности, и она разберется!

Дело в том, что запирающие узел цилиндрические штырьки под действием центробежной силы расходятся в стороны и открывают "замок". Простенько, но со вкусом!


Для начала на верхней грани собираем крест. Чтобы это сделать, ищем ребро с самым большим прямоугольником. Поворачиваем грань, на которой расположен элемент, вправо, чтобы ребро оказалось снизу.

Бывает вариант, когда одна из деталей находится на противоположном ребре. Тогда нужно переднюю часть повернуть за часовой стрелкой, верх – против часовой стрелки, правую грань – за часовой стрелкой.

Остальные ребра собираются аналогично.

Углы с деталями

Ставим на места углы с деталями.

На каждом угле должен находиться прямоугольник от самого маленького до самого большого.

Делаем такую комбинацию:

  • низ – против часовой стрелки;
  • низ – за часовой стрелкой.

Средний слой

Ставим ребра среднего слоя на свои места.

Кубик следует перевернуть так, чтобы несобранная грань оказалась сверху. Самые крайние детали, выступающие за пределы кубика, нужно держать сверху до конца сборки.

На верхней грани необходимо найти самый большой прямоугольник и поставить его на угол. При этом могут быть два варианта:

Ребро должно перейти вниз и вправо . Сделать это можно с помощью такой комбинации:

  • Верхняя часть – за часовой стрелкой;
  • правая грань – за часовой стрелкой;
  • верх – против часовой стрелки;
  • передняя часть – против часовой стрелки;
  • верх – за часовой стрелкой;
  • передняя часть – за часовой стрелкой.

Во втором случае кубик с нужной деталью возьмите центром к себе. Ребро должно перейти вниз и влево таким способом:

  • Верх – против часовой стрелки;
  • верх – за часовой стрелкой;
  • левая часть – за часовой стрелкой;
  • верх – за часовой стрелкой;
  • передняя часть – за часовой стрелкой;
  • верх – против часовой стрелки;
  • передняя грань – против часовой стрелки.

Иногда нужное ребро находится не сверху, а в среднем слое. Его нужно убрать оттуда любым верхним ребром, используя комбинацию для первого случая.

Верхний крест

Сверху найдите детали, которые собраны правильно. Они должны образовать крест. Может оказаться, что сверху есть центральная деталь без линии, угла или креста. Если есть угол из трех деталей, важно, чтобы он смотрел влево от вас. Если это линия, необходимо, чтобы она шла справа налево.

Чтобы получился верхний крест, проделайте комбинацию:

  • Передняя часть – за часовой стрелкой;
  • верх – за часовой стрелкой;
  • правая часть – против часовой стрелки;
  • верх – против часовой стрелки;
  • передняя часть – против часовой стрелки.

Сбор ребра

Поверните верх так, чтобы два ребра из четырех были одинакового размера (желательно квадраты) и стояли под углом друг к другу. Если так сделать не получается, проделайте из любой позиции такую комбинацию:

  • верхняя часть – за часовой стрелкой;
  • правая часть – против часовой стрелки;
  • верх – за часовой стрелкой;
  • правая часть – за часовой стрелкой;
  • верхняя часть – дважды за часовой стрелкой;
  • правая часть – против часовой стрелки.

Возьмите кубик так, чтобы правильные ребра смотрели от вас и направо. Расположите два оставшихся ребра следующим образом:

  • Правая часть – за часовой стрелкой;
  • верх – за часовой стрелкой;
  • правая часть – против часовой стрелки;
  • верх – за часовой стрелкой;
  • правая часть – за часовой стрелкой;
  • верхняя грань – дважды за часовой стрелкой;
  • правая часть – против часовой стрелки;
  • верхняя часть – за часовой стрелкой.

Сборка углов

Найдите элемент на угле, который по размерам совпадает с деталью на среднем слое, но повернут неправильно. Возьмите кубик этим углом к себе. Остальные углы расположите по местам такой комбинацией:

  • Верхняя грань – за часовой стрелкой;
  • правая часть – за часовой стрелкой;
  • верх – против часовой стрелки;
  • левая грань – против часовой стрелки;
  • верх – за часовой стрелкой;
  • правая часть – против часовой стрелки;
  • верх – против часовой стрелки;
  • левая грань – против часовой стрелки.

Комбинацию следует повторить несколько раз.

Последний слой

Если некоторые углы развернуты правильно, выберите тот, который еще нужно развернуть. Он должен быть повернут к вам и влево. Сделайте комбинацию 2-5 раз:

  • Правая грань – против часовой стрелки;
  • низ – против часовой стрелки;
  • правая часть – за часовой стрелкой;
  • низ – за часовой стрелкой.

Комбинация делается несколько раз, пока первый угол не станет правильно. Потом поверните верхнюю грань против часовой стрелки. Перед вами будет следующий угол, который нужно развернуть. Снова сделайте комбинацию. И так со всеми углами. Нижние детали могут спутаться, но в процессе станут на свои места.

В этом шаге главное не менять положения кубика.

Дата: 2013-11-07 Редактор: Загуменный Владислав

Мир устроен так, что вещи в нем могут жить дольше, чем люди, иметь разные имена в разное время и в разных странах, даже можем играть в игры Симпсоны . Игрушка, которую вы видите на рисунке, известна в нашей стране как "головоломка адмирала Макарова". В других странах она имеет другие имена, из которых наиболее часто встречающиеся - "дьявольский крест" и "чертов узел".

Этот узел связывается из 6 брусков квадратного сечения. В брусках имеются пазы, благодаря которым и возможно скрещивание брусков в центре узла. Один из брусков не имеет пазов, он закладывается в узел последним, а при разборке вынимается первым.

Автор этой головоломки неизвестен. Появилась она много веков назад в Китае. В ленинградском Музее антропологии и этнографии им. Петра Великого, известном как "Кунсткамера", хранится старинная, сандалового дерева шкатулка из Индии, в 8 углах которой пересечения брусков каркаса образуют 8 головоломок. В средние века моряки и купцы, воины и дипломаты забавлялись такими головоломками и заодно развозили их по свету. Адмирал Макаров, дважды бывавший в Китае до своей последней поездки и гибели в Порт-Артуре, привез игрушку в Петербург, где она вошла в моду в светских салонах. В глубину России головоломка проникала и другими дорогами. Известно, что в деревню Олсуфьево Брянской области чертов узел принес солдат, вернувшийся с русско-туредкой войны.

Сейчас головоломку можно купить в магазине, но приятнее сделать ее своими руками. Наиболее подходящий размер брусков для самодельной конструкции: 6х2х2 см.

Многообразие чертовых узлов

До начала нашего века, за несколько сот лет существования игрушки в Китае, Монголии и Индии было придумано более ста вариантов головоломки, отличающихся между собой конфигурацией вырезов в брусках. Но самыми популярными остаются два варианта. Показанный на рисунке 1 решается довольно легко, просто его и изготовить. Именно эта конструкция использована в древней индийской шкатулке. Из брусков рисунка 2 складывается головоломка, которая называется "Чертов узел". Как вы догадываетесь, свое название она получила за трудность решения.


Рис. 1 Простейший вариант головоломки "чёртов узел"

В Европе, где, начиная с конца прошлого века, "Чертов узел" получил широкую известность, энтузиасты стали придумывать и делать наборы брусков с разными конфигурациями вырезов. Один из наиболее удачных комплектов позволяет получать 159 головоломок и состоит из 20 брусков 18 видов. Хотя все узлы внешне неразличимы, они совершенно по разному устроены внутри.


Рис. 2 "Головломка адмирала Макарова"

Болгарский художник, профессор Петр Чуховски, автор множества причудливых и красивых деревянных узлов из разного количества брусков, тоже занимался головоломкой "Чертов узел". Он разработал набор конфигураций брусков и исследовал всевозможные комбинации 6 брусков для одного простого его поднабора.

Настойчивее всех в таких поисках был голландский профессор математики Ван де Боер, который своими руками сделал набор из нескольких сотен брусков и составил таблицы, показывающие, как собрать 2906 вариантов узлов.

Это было в 60-е годы, а в 1978 году американский математик Билл Катлер написал программу для компьютера и методом полного перебора определил, что существует 119 979 вариантов головоломки из 6 элементов, отличающихся друг от друга комбинациями выступов и впадин в брусках, а также размещением брусков, при условии, что внутри узла нет пустот.

Удивительно большое число для такой маленькой игрушки! Поэтому для решения задачи и понадобилась ЭВМ.

Как ЭВМ решает головоломки ?

Конечно, не так, как человек, но и не каким-то волшебным способом. Компьютер решает головоломки (и другие задачи) по программе, программы пишут программисты. Пишут, как им удобно, но так, чтобы было понятно и ЭВМ. Как же ЭВМ манипулирует деревянными брусками?

Будем исходить из того, что мы имеем набор из 369 брусков, отличающихся друг от друга конфигурациями выступов (этот набор первым определил Ван де Боер). В ЭВМ надо ввести описания этих брусков. Минимальный вырез (или выступ) в бруске - это кубик с ребром, равным 0,5 толщины бруска. Назовем его единичным кубиком. В целом бруске содержатся 24 таких кубика (рисунок 1). В ЭВМ для каждого бруска заводится "малый" массив из 6х2х2=24 чисел. Брусок с вырезами задается последовательностью 0 и 1 в "малом" массиве: 0 соответствует вырезанному кубику, 1 - целому. Каждый из "малых" массивов имеет свои номер (от 1 до 369). Любому из них можно присвоить еще номер от 1 до 6, отвечающий положению бруска внутри головоломки.

Перейдем теперь к головоломке. Представим, что она помещается внутрь куба размером 8х8х8. В ЭВМ этому кубу соответствует "большой" массив, состоящий из 8х8х8=512 ячеек-чисел. Поместить определенный брусок внутрь куба - это значит заполнить соответствующие ячейки "большого" массива числами, равными номеру данного бруска.

Сравнивая 6 "малых" массивов и основной, ЭВМ (т. е. программа) как бы складывает вместе 6 брусков. По результатам сложения чисел она определяет, сколько и каких "пустых", "заполненных" и "переполненных" ячеек образовалось в основном массиве. "Пустые" ячейки соответствуют пустому пространству внутри головоломки, "заполненные" - соответствуют выступам в брусках, а "переполненные" - попытке соединить вместе два единичных кубика, что, естественно, запрещено. Такое сравнение производится многократно, не только с разными брусками, но и с учетом их разворотов, мест, которые они занимают в "кресте", и т. п.

В результате отбирают те варианты, в которых нет пустых и переполненных ячеек. Для решения этой задачи достаточно было бы "большого" массива размером 6х6х6 ячеек. Оказывается, однако, что существуют комбинации брусков, полностью заполняющие внутренний объем головоломки, но при этом разобрать их невозможно. Поэтому программа должна уметь проверять узел на возможность разборки. Для этого Катлер и взял массив 8х8х8, хотя его размеры, возможно, недостаточны для проверки всех случаев.

Он заполняется информацией о конкретном варианте головоломки. Внутри массива программа пытается "двигать" бруски, т. е. перемещает в "большом" массиве части бруска размером 2х2х6 ячеек. Перемещение происходит на 1 ячейку в каждом из 6 направлении, параллельных осям головоломки. Результаты тех из 6 попыток, в которых не образуется "переполненных" ячеек, запоминаются как исходные положения для следующих шестерок попыток. В результате строится дерево всевозможных движений до тех пор, пока какой-нибудь брусок целиком не выйдет из основного массива или же после всех попыток останутся "переполненные" ячейки, что соответствует варианту, который невозможно разобрать.

Вот так были получены на ЭВМ 119 979 вариантов "Чертова узла", в том числе не 108, как полагали древние, а 6402 варианта, имеющих 1 целый, без вырезов брусок.

Суперузел

Обратим внимание, что Катлер отказался от исследования общей задачи - когда узел содержит и внутренние пустоты. В этом случае количество узлов из 6 брусков сильно возрастает и полный перебор, необходимый для поиска допустимых решений, становится нереальным даже для современного компьютера. Но как мы увидим сейчас, самые интересные и трудные головоломки содержатся именно в общем случае - разборку головоломки тогда можно сделать далеко не тривиальной.

Благодаря наличию пустот, появляется возможность последовательно передвинуть несколько брусков прежде, чем удастся полностью отделить какой-либо брусок. Движущийся брусок отцепляет некоторые бруски, разрешает движение следующего бруска и одновременно зацепляет другие бруски.

Чем больше нужно проделать манипуляций при разборке, тем интереснее и труднее вариант головоломки. Пазы в брусках расположены так хитро, что поиск решения напоминает блуждание по темному лабиринту, в котором все время наталкиваешься то на стены, то на тупики. Такого типа узел несомненно заслуживает и нового имени; мы будем называть его "суперузел". Мерой сложности суперузла назовем количество движений отдельных брусков, которые необходимо сделать до того, как первый элемент будет отделен от головоломки.

Мы не знаем, кто придумал первый суперузел. Наиболее знамениты (и наиболее трудны в решении) два суперузла: "колючка Билла" сложности 5, придуманная У. Катлером, и "суперузел Дюбуа" сложности 7. До сих пор считалось, что степень сложности 7 едва ли можно превзойти. Однако первому из авторов этой статьи удалось усовершенствовать "узел Дюбуа" и увеличить сложность до 9, а затем, используя некоторые новые идеи, получить суперузлы со сложностью 10, 11 и 12. Но число 13 остается пока непреодолимым. Может быть, число 12 является самой большой сложностью суперузла?

Решение суперузлов

Приводить чертежи таких трудных головоломок, как суперузлы, и не раскрывать их секретов было бы слишком жестоко по отношению даже к знатокам головоломок. Мы дадим решение суперузлов в компактной, алгебраической форме.

Перед разборкой берем головоломку и ориентируем так, чтобы номера деталей соответствовали рисунку 1. Последовательность разборки записывается в виде сочетания цифр и букв. Цифры означают номера брусков, буквы - направления движения в соответствии с показанной на рисунках 3 и 4 системой координат. Черта над буквой означает движение в отрицательном направлении оси координат. Один шаг - это перемещение бруска на 1/2 его ширины. Когда брусок передвигается сразу на два шага, его перемещение записывается в скобках с показателем степени 2. Если передвигают сразу несколько деталей, которые зацеплены между собой, то их номера заключают н скобки, например (1, 3, 6) х. Отделение бруска от головоломки отмечается вертикальной стрелкой.

Приведем теперь примеры лучших суперузлов.

Головоломка У. Катлера ("колючка Билла")

Она состоит из деталей 1, 2, 3, 4, 5, 6, показанных на рисунке 3. Там же приводится алгоритм ее решения. Любопытно, что в журнале "Scientific American" (1985, № 10) приведен другой вариант этой головоломки и сообщается, что "колючка Билла" имеет единственное решение. Различие между вариантами - всего в одном бруске: деталях 2 и 2 В на рисунке 3.



Рис. 3 "Колючка Билла", разработанна с помощью ЭВМ.

Из-за того, что деталь 2 В содержит меньше вырезов, чем деталь 2, вставить ее в "колючку Билла" по указанному на рисунке 3 алгоритму не удается. Остается предположить, что головоломка из "Scientific American" собирается каким-то другим способом.

Если это так и мы ее соберем, то после этого сможем заменить деталь 2 В на деталь 2, так как последняя занимает меньший объем, чем 2 В. В результате мы получим второе решение головоломки. Но "колючка Билла" имеет единственное решение, и из нашего противоречия можно сделать только один вывод: во втором варианте допущена ошибка в рисунке.

Аналогичная ошибка сделана еще в одной публикации (Дж. Слокум, Дж. Ботерманс "Puzzles old and new", 1986), но уже в другом бруске (деталь 6 С на рисунке 3). Каково же было тем читателям, которые пытались и, возможно, пытаются до сих пор решить эти головоломки?

Мир устроен так, что вещи в нем могут жить дольше, чем люди, иметь разные имена в разное время и в разных странах. Игрушка, которую вы видите на рисунке, известна в нашей стране как «головоломка адмирала Макарова». В других странах она имеет другие имена, из которых наиболее часто встречающиеся - «дьявольский крест» и «чертов узел».

Этот узел связывается из 6 брусков квадратного сечения. В брусках имеются пазы, благодаря которым и возможно скрещивание брусков в центре узла. Один из брусков не имеет пазов, он закладывается в узел последним, а при разборке вынимается первым.

Купить одну из таких головоломок можно, например, на my-shop.ru

А так же вот различные вариации на тему раз , два , три , четыре , пять , шесть , семь , восемь .

Автор этой головоломки неизвестен. Появилась она много веков назад в Китае. В ленинградском Музее антропологии и этнографии им. Петра Великого, известном как «Кунсткамера», хранится старинная, сандалового дерева шкатулка из Индии, в 8 углах которой пересечения брусков каркаса образуют 8 головоломок. В средние века моряки и купцы, воины и дипломаты забавлялись такими головоломками и заодно развозили их по свету. Адмирал Макаров, дважды бывавший в Китае до своей последней поездки и гибели в Порт-Артуре, привез игрушку в Петербург, где она вошла в моду в светских салонах. В глубину России головоломка проникала и другими дорогами. Известно, что в деревню Олсуфьево Брянской области чертов узел принес солдат, вернувшийся с русско-туредкой войны.
Сейчас головоломку можно купить в магазине, но приятнее сделать ее своими руками. Наиболее подходящий размер брусков для самодельной конструкции: 6х2х2 см.

Многообразие чертовых узлов

До начала нашего века, за несколько сот лет существования игрушки в Китае, Монголии и Индии было придумано более ста вариантов головоломки, отличающихся между собой конфигурацией вырезов в брусках. Но самыми популярными остаются два варианта. Показанный на рисунке 1 решается довольно легко, просто его и изготовить. Именно эта конструкция использована в древней индийской шкатулке. Из брусков рисунка 2 складывается головоломка, которая называется «Чертов узел». Как вы догадываетесь, свое название она получила за трудность решения.

Рис. 1 Простейший вариант головоломки «чёртов узел»

В Европе, где, начиная с конца прошлого века, «Чертов узел» получил широкую известность, энтузиасты стали придумывать и делать наборы брусков с разными конфигурациями вырезов. Один из наиболее удачных комплектов позволяет получать 159 головоломок и состоит из 20 брусков 18 видов. Хотя все узлы внешне неразличимы, они совершенно по разному устроены внутри.

Рис. 2 «Головломка адмирала Макарова»

Болгарский художник, профессор Петр Чуховски, автор множества причудливых и красивых деревянных узлов из разного количества брусков, тоже занимался головоломкой «Чертов узел». Он разработал набор конфигураций брусков и исследовал всевозможные комбинации 6 брусков для одного простого его поднабора.

Настойчивее всех в таких поисках был голландский профессор математики Ван де Боер, который своими руками сделал набор из нескольких сотен брусков и составил таблицы, показывающие, как собрать 2906 вариантов узлов.

Это было в 60-е годы, а в 1978 году американский математик Билл Катлер написал программу для компьютера и методом полного перебора определил, что существует 119 979 вариантов головоломки из 6 элементов, отличающихся друг от друга комбинациями выступов и впадин в брусках, а также размещением брусков, при условии, что внутри узла нет пустот.

Удивительно большое число для такой маленькой игрушки! Поэтому для решения задачи и понадобилась ЭВМ.

Как ЭВМ решает головоломки?

Конечно, не так, как человек, но и не каким-то волшебным способом. Компьютер решает головоломки (и другие задачи) по программе, программы пишут программисты. Пишут, как им удобно, но так, чтобы было понятно и ЭВМ. Как же ЭВМ манипулирует деревянными брусками?
Будем исходить из того, что мы имеем набор из 369 брусков, отличающихся друг от друга конфигурациями выступов (этот набор первым определил Ван де Боер). В ЭВМ надо ввести описания этих брусков. Минимальный вырез (или выступ) в бруске - это кубик с ребром, равным 0,5 толщины бруска. Назовем его единичным кубиком. В целом бруске содержатся 24 таких кубика (рисунок 1). В ЭВМ для каждого бруска заводится «малый» массив из 6х2х2=24 чисел. Брусок с вырезами задается последовательностью 0 и 1 в «малом» массиве: 0 соответствует вырезанному кубику, 1 - целому. Каждый из «малых» массивов имеет свои номер (от 1 до 369). Любому из них можно присвоить еще номер от 1 до 6, отвечающий положению бруска внутри головоломки.

Перейдем теперь к головоломке. Представим, что она помещается внутрь куба размером 8х8х8. В ЭВМ этому кубу соответствует «большой» массив, состоящий из 8х8х8=512 ячеек-чисел. Поместить определенный брусок внутрь куба - это значит заполнить соответствующие ячейки «большого» массива числами, равными номеру данного бруска.

Сравнивая 6 «малых» массивов и основной, ЭВМ (т. е. программа) как бы складывает вместе 6 брусков. По результатам сложения чисел она определяет, сколько и каких «пустых», «заполненных» и «переполненных» ячеек образовалось в основном массиве. «Пустые» ячейки соответствуют пустому пространству внутри головоломки, «заполненные» - соответствуют выступам в брусках, а «переполненные» - попытке соединить вместе два единичных кубика, что, естественно, запрещено. Такое сравнение производится многократно, не только с разными брусками, но и с учетом их разворотов, мест, которые они занимают в «кресте», и т. п.

В результате отбирают те варианты, в которых нет пустых и переполненных ячеек. Для решения этой задачи достаточно было бы «большого» массива размером 6х6х6 ячеек. Оказывается, однако, что существуют комбинации брусков, полностью заполняющие внутренний объем головоломки, но при этом разобрать их невозможно. Поэтому программа должна уметь проверять узел на возможность разборки. Для этого Катлер и взял массив 8х8х8, хотя его размеры, возможно, недостаточны для проверки всех случаев.

Он заполняется информацией о конкретном варианте головоломки. Внутри массива программа пытается «двигать» бруски, т. е. перемещает в «большом» массиве части бруска размером 2х2х6 ячеек. Перемещение происходит на 1 ячейку в каждом из 6 направлении, параллельных осям головоломки. Результаты тех из 6 попыток, в которых не образуется «переполненных» ячеек, запоминаются как исходные положения для следующих шестерок попыток. В результате строится дерево всевозможных движений до тех пор, пока какой-нибудь брусок целиком не выйдет из основного массива или же после всех попыток останутся «переполненные» ячейки, что соответствует варианту, который невозможно разобрать.

Вот так были получены на ЭВМ 119 979 вариантов «Чертова узла», в том числе не 108, как полагали древние, а 6402 варианта, имеющих 1 целый, без вырезов брусок.

Суперузел

Обратим внимание, что Катлер отказался от исследования общей задачи - когда узел содержит и внутренние пустоты. В этом случае количество узлов из 6 брусков сильно возрастает и полный перебор, необходимый для поиска допустимых решений, становится нереальным даже для современного компьютера. Но как мы увидим сейчас, самые интересные и трудные головоломки содержатся именно в общем случае - разборку головоломки тогда можно сделать далеко не тривиальной.

Благодаря наличию пустот, появляется возможность последовательно передвинуть несколько брусков прежде, чем удастся полностью отделить какой-либо брусок. Движущийся брусок отцепляет некоторые бруски, разрешает движение следующего бруска и одновременно зацепляет другие бруски.
Чем больше нужно проделать манипуляций при разборке, тем интереснее и труднее вариант головоломки. Пазы в брусках расположены так хитро, что поиск решения напоминает блуждание по темному лабиринту, в котором все время наталкиваешься то на стены, то на тупики. Такого типа узел несомненно заслуживает и нового имени; мы будем называть его «суперузел». Мерой сложности суперузла назовем количество движений отдельных брусков, которые необходимо сделать до того, как первый элемент будет отделен от головоломки.

Мы не знаем, кто придумал первый суперузел. Наиболее знамениты (и наиболее трудны в решении) два суперузла: «колючка Билла» сложности 5, придуманная У. Катлером, и «суперузел Дюбуа» сложности 7. До сих пор считалось, что степень сложности 7 едва ли можно превзойти. Однако первому из авторов этой статьи удалось усовершенствовать «узел Дюбуа» и увеличить сложность до 9, а затем, используя некоторые новые идеи, получить суперузлы со сложностью 10, 11 и 12. Но число 13 остается пока непреодолимым. Может быть, число 12 является самой большой сложностью суперузла?

Решение суперузлов

Приводить чертежи таких трудных головоломок, как суперузлы, и не раскрывать их секретов было бы слишком жестоко по отношению даже к знатокам головоломок. Мы дадим решение суперузлов в компактной, алгебраической форме.

Перед разборкой берем головоломку и ориентируем так, чтобы номера деталей соответствовали рисунку 1. Последовательность разборки записывается в виде сочетания цифр и букв. Цифры означают номера брусков, буквы - направления движения в соответствии с показанной на рисунках 3 и 4 системой координат. Черта над буквой означает движение в отрицательном направлении оси координат. Один шаг - это перемещение бруска на 1/2 его ширины. Когда брусок передвигается сразу на два шага, его перемещение записывается в скобках с показателем степени 2. Если передвигают сразу несколько деталей, которые зацеплены между собой, то их номера заключают н скобки, например (1, 3, 6) х. Отделение бруска от головоломки отмечается вертикальной стрелкой.
Приведем теперь примеры лучших суперузлов.

Головоломка У. Катлера («колючка Билла»)

Она состоит из деталей 1, 2, 3, 4, 5, 6, показанных на рисунке 3. Там же приводится алгоритм ее решения. Любопытно, что в журнале «Scientific American» (1985, № 10) приведен другой вариант этой головоломки и сообщается, что «колючка Билла» имеет единственное решение. Различие между вариантами - всего в одном бруске: деталях 2 и 2 В на рисунке 3.

Рис. 3 «Колючка Билла», разработанна с помощью ЭВМ.

Из-за того, что деталь 2 В содержит меньше вырезов, чем деталь 2, вставить ее в «колючку Билла» по указанному на рисунке 3 алгоритму не удается. Остается предположить, что головоломка из «Scientific American» собирается каким-то другим способом.

Если это так и мы ее соберем, то после этого сможем заменить деталь 2 В на деталь 2, так как последняя занимает меньший объем, чем 2 В. В результате мы получим второе решение головоломки. Но «колючка Билла» имеет единственное решение, и из нашего противоречия можно сделать только один вывод: во втором варианте допущена ошибка в рисунке.
Аналогичная ошибка сделана еще в одной публикации (Дж. Слокум, Дж. Ботерманс «Puzzles old and new», 1986), но уже в другом бруске (деталь 6 С на рисунке 3). Каково же было тем читателям, которые пытались и, возможно, пытаются до сих пор решить эти головоломки?

Головоломка Филиппа Дюбуа (рис. 4)

Она решается за 7 ходов по следующему алгоритму: (6z )^2, 3x . 1z , 4х, 2х, 2у, 2z?. Ha рисунке показано расположение деталей на б таге разборки. Начиная с этого положения, используя обратный порядок алгоритма и изменяя направления движения на противоположные, можно собрать головоломку.

Три суперузла Д. Вакарелова.

Первая из его головоломок (рис. 5) - это усовершенствованный вариант головоломки Дюбуа, он имеет сложность 9. Этот суперузел больше других похож на лабиринт, так как при его разборке возникают ложные ходы, заводящие в тупики. Пример такого тупика - ходы Зх , 1z в начале разборки. А правильное решение такое:

(6z )^2, Зх ,1z, 4х, 2х, 2у, 5x, 5y, 3z?.

Вторая головоломка Д. Вакарелова (рис. 6) решается по формуле:

4z ,1z , Зх, 2х, 2z , Зх , 1z, 6z, Зх , 1х ,3z?

и имеет сложность 11. Она замечательна тем, что брусок 3 на третьем ходу делает шаг Зх, а на шестом ходу возвращается обратно (Зх ); и брусок 1 на втором шаге двигается по 1z , а на 7 ходу делает обратный ход.

Третья головоломка (рис. 7) - одна из самых сложных. Ее решение:
4z , 1z , Зх, 2х, 2z , Зх , 6z , 1z, (1,3,6)х , 5y?
до седьмого хода повторяет предыдущую головоломку, затем, на 9 ходу в ней встречается совершенно новая ситуация: неожиданно все бруски перестают двигаться! И тут необходимо догадаться подвинуть сразу 3 бруска (1, 3, 6), и если это движение считать за 3 хода, то сложность головоломки будет равна 12.

Все фото из статьи

Головоломки, как известно, хорошо развивают сообразительность, мышление и внимательность, поэтому их рекомендуется разгадывать детям. Правда, с некоторыми из них нелегко справится даже взрослым, которые тоже не прочь «покрутить в руках» забавные детальки. В данной статье мы рассмотрим, как сделать некоторые деревянные головоломки своими руками, с которыми будет интересно играть как детям, так и взрослым.

Общие сведения

В первую очередь следует сказать, что изготавливать головоломки из дерева своими руками не менее увлекательно, чем разгадывать. Причем в их изготовлении нет ничего сложного, поэтому справиться с этой задачей может каждый.

Единственное, для этого понадобится простой набор инструментов, который имеется у каждого домашнего мастера:

  • Лобзик (желательно электролобзик);
  • Стамески ;
  • Электродрель ;
  • Напильники и надфили ;
  • Наждачная бумага .

Совет!
Чтобы упростить задачу и не допустить ошибок в процессе изготовления изделий, предварительно нужно выполнить чертежи деревянных головоломок своими руками.

Что касается материалов, то чаще всего требуются:

  • Небольшие досочки;
  • Бруски;
  • Листы фанеры;
  • Лак по дереву.

Даже если под рукой этих материалов не оказалось, их можно приобрести в строительном магазине. Цена на них обычно невысокая.

Изготовление

Существует очень много вариантов деревянных головоломок для детей и взрослых. Далее мы рассмотрим наиболее популярные и распространенные из них, которые несложно сделать самостоятельно.

Для изготовления данной головоломки понадобится рейка, ширина которой в три раза больше толщины, к примеру, если ее толщина составляет 8 мм, то ширина должна равняться 24 мм.

Выполняется изделие следующим образом:

  • Рейку подходящих параметров нужно разрезать на три одинаковые по длине части.
  • Далее в каждой планке нужно лобзиком выпилить вырез, соответствующий ее поперечному сечению. В итоге планки должны входить в это отверстие с небольшим усилием. Поэтому лучше, чтобы окошко было немножко меньших размеров, в таком случае довести его до нужных параметров можно при помощи надфилей.
  • В двух планках сбоку надо сделать пропил, ширина которого должна точно равняться их толщине. В результате в двух деталях должен получиться Т-образный пропил.
  • В завершение работы детали нужно отшлифовать и вскрыть лаком.

На этом процесс изготовления головоломки завершен.

Теперь ее нужно собрать, выполнив следующие действия:

  • Одну из деталей с Т-образным вырезом надо вставить в окошко, причем ее нужно настолько продвинуть, чтобы торец бокового выреза оказался «заподлицо» с поверхностью планки.
  • Далее следует взять третью деталь и сверху надеть ее на планку с окошком до упора.
  • После этого нужно до упора осадить первую планку с Т-образным пропилом.

В итоге головоломка принимает вид цельного изделия.

Перекресток

Для выполнения данной поделки понадобится брусок квадратного сечения 1 см.

Инструкция по его изготовлению выглядит следующим образом:

  • От рейки нужно отрезать три бруска длиной около 8-9 сантиметров.
  • Посередине одного из них надо выполнить вырез шириной 1 см так, чтобы в итоге образовалась квадратная перемычка со сторонами 0,5 см.
  • Вторую деталь следует сделать точно так же, только перемычка должна получиться не квадратной, а круглой.
  • В третьем бруске нужно выпилить паз глубиной и шириной 0,5 см.
  • Затем этот же брусок надо повернуть на 90 градусов, и сделать еще один такой же паз на смежной поверхности.
  • Далее все детали следует также отшлифовать и вскрыть лаком.

На этом головоломка из дерева готова.

Теперь ее нужно собрать следующим образом:

  • Удерживая брусок с двумя пазами вертикально, в него надо завести деталь с круглой перемычкой.
  • Затем во второй паз вставляется головоломка с квадратным сечением.
  • После этого брусок с круглой перемычкой нужно повернуть на 90 градусов против часовой стрелки, после чего изделие примет вид нерассыпающейся цельной фигуры, которую не просто разобрать.

Обратите внимание!
Чтобы все заготовки получились качественными, делать их необходимо из сухой древесины.

Головоломка Макарова

Данная поделка более сложная, поэтому прежде чем приступить к ее изготовлению, желательно выполнить чертеж. Надо сказать, что чертежи головоломок из дерева своими руками необязательно выполнять в масштабе с высокой точностью. Главное обозначить на них все размеры в миллиметрах и основные конструкционные особенности изделия.

Для выполнения головоломки Макарова понадобится такая же рейка, как и для вышеописанного изделия.

Выполняется она следующим образом:

  • Вначале нужно на шесть одинаковых частей. Один брусок нужно сразу отложить, не выполняя на нем никаких вырезов.
  • На другом бруске надо сделать паз шириной в 1 см и глубиной 0,5 см.
  • На третьем бруске нужно выполнить два паза. Первый такой же, как на предыдущей детали, а второй на расстоянии 0,5 см. Он должен быть такой же глубины, но в два раза шире.
  • Оставшиеся три детали выполняются одинаково – на каждой из них выполняются по два паза. Первый паз выпиливается шириной в 2 см и глубиной 0,5 см. После этого брусок надо повернуть на 90 градусов и, как показано на схеме, выполнить паз шириной 1 см и глубиной 0,5 см.
  • Готовые детали нужно обработать и вскрыть лаком.

Собирается изделие следующим образом:

  • Два последних бруска нужно сложить, как показано на схеме.
  • В образовавшееся окошко вставляется третий брусок.
  • Далее придерживая три бруска нужно вставить последний шестой брусок, как показано на схеме.
  • Затем второй брусок следует повернуть пазом вверх и ввести в незамкнутое образовавшееся окошко «а».
  • После этого заводится брусок без выреза в окошко, образовавшееся между первыми двумя сложенными деталями. После этого конструкция плотно свяжется.

Следует отметить, что без схемы собрать эту головоломку сложно даже взрослым.

На фото — кубик в кубе

Кубик в кубе

Куб в кубе называют столярной головоломкой, так как она отличается от всех вышеописанных изделий. Данная конструкция представляет собой пустотелый куб с круглыми отверстиями, внутри которого находится маленький кубик. Причем, вытащить последний невозможно.

При виде такой головоломки приходит мысль, что большой куб был незаметно склеен, ведь иначе поместить в него кубик невозможно. Однако, в действительности все гораздо проще.

Изготавливается головоломка деревянный кубик в кубе следующим образом:

  • В первую очередь нужно с квадратным сечением куб. Он должен иметь правильную геометрическую форму, так как от этого зависит успех всей операции.
  • Затем с каждой стороны куба надо обозначить центр. Для этого следует начертить диагонали.
  • Далее по центру выполняется углубление сверлом Форснера на несколько миллиметров.
  • После этого в получившейся окружности надо начертить квадрат. С его помощью можно определить глубину сверления, на которой все окружности будут пересекаться.
  • Затем заготовка закрепляется и с каждой стороны высверливается отверстие на определенную ранее глубину. Чтобы не испортить деталь, углубляться с каждой стороны следует равномерно, многократно переворачивая куб.
  • В итоге внутри куба получится маленький кубик, соединенный тонкими перегородками с большим в восьми точках.
  • После этого перегородки надо перерезать ножом. Таким образом, получатся две независимые друг от друга фигуры.
  • В завершение изделия нужно вскрыть лаком. Для этого обычно используют метод окунания.

Такой головоломкой можно разыграть друзей, к примеру, предложив им на спор вытащить маленький кубик, ведь он же туда как-то попал?

Кубик-тайник

Еще одна интересная головоломка — кубик из дерева представляет собой тайник. По сути это коробочка, которая на первый взгляд кажется совершенно неразборной. Однако, в действительности она состоит из шести деталей, незакрепленных между собой ни клеем, ни чем либо еще.

Для изготовления данной конструкции понадобится 6 дощечек длиной 63 мм, шириной 40 мм и толщиной 6 мм. Из этих дощечек нужно вырезать лобзиком три детали:

Самое главное в изготовлении данного изделия – это добиться максимально точных размеров всех деталей. После их изготовления, необходимо выполнить шлифовку наждачной бумагой для получения гладкой поверхности.

Следует отметить, что изготовлением третьей детали надо заниматься после сборки всех остальных элементов конструкции. Ее необходимо подогнать так, чтобы она плотно входила в паз между элементами 1 и 2.

Весь секрет головоломки заключается в элементе 3, который работает как защелка. Чтобы разобрать тайник, нужно на него нажать и сдвинуть внутрь кубика. Если все детали выполнены правильно, то в собранном состоянии конструкция не будет иметь люфтов и представляет собой прочную конструкцию.

Вывод

Мы рассмотрели процесс изготовления одних из наиболее интересных деревянных головоломок. Все они достаточно просто изготавливаются, и при этом являются не только забавными играми, но и отличными сувенирами.

Из видео в этой статье вы можете ознакомиться с некоторой дополнительной информацией по озвученной выше теме.